Subnormality of Bergman-like Weighted Shifts

نویسنده

  • RAÚL E. CURTO
چکیده

For a, b, c, d ≥ 0 with ad − bc > 0, we consider the unilateral weighted shift S(a, b, c, d) with weights αn := √ an+b cn+d (n ≥ 0). Using Schur product techniques, we prove that S(a, b, c, d) is always subnormal; more generally, we establish that for every p ≥ 1, all p-subshifts of S(a, b, c, d) are subnormal. As a consequence, we show that all Bergman-like weighted shifts are subnormal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Subnormality of 2-variable weighted shifts with diagonal core Subnormality of 2-variable weighted shifts with diagonal core ⋆

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. Given a 2-variable weighted shift T with diagonal core, we prove that LPCS is soluble for T if and only if LPCS is soluble for some power Tm (m ∈ Z+,m ≡ (m1,m2),m1,m2 ≥ 1). We do this by first developing the bas...

متن کامل

Towards a Model Theory for 2–hyponormal Operators

We introduce the notion of weak subnormality, which generalizes subnormality in the sense that for the extension b T ∈ L(K) of T ∈ L(H) we only require that b T ∗ b Tf = b T b T ∗f hold for f ∈ H; in this case we call b T a partially normal extension of T . After establishing some basic results about weak subnormality (including those dealing with the notion of minimal partially normal extensio...

متن کامل

Propagation Phenomena for Hyponormal 2-variable Weighted Shifts

We study the class of hyponormal 2-variable weighted shifts with two consecutive equal weights in the weight sequence of one of the coordinate operators. We show that under natural assumptions on the coordinate operators, the presence of consecutive equal weights leads to horizontal or vertical flatness, in a way that resembles the situation for 1-variable weighted shifts. In 1variable, it is w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005